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Abstract

The level set method has been successfully used for moving interface problems. The final step of the method is to

construct and visualize the isosurface of a discrete function / : f0; . . . ;Ngn ! Rm. There have existed many practical

isosurfacing algorithms when n ¼ 3; m ¼ 1 or n ¼ 2; m ¼ 1. Recently we have begun to see the development of iso-

surfacing algorithms for higher dimensions and codimensions. This paper introduces a unified theory and an efficient

isosurfacing algorithm that works in arbitrary number of dimensions and codimensions. The isosurface C of a discrete

function / is defined as the isosurface of its simplicial interpolant /̂/ : ½0;N �n ! Rm. With this simplicial definition, C is

geometrically a piecewise intersection of a simplex and m hyperplanes. C is constructed as the union of simplices. The

construction costs OðNnÞ with a uniform grid and OðNn	m logðNÞÞ with a dyadic grid in numerical space and time.

When n ¼ mþ 1 or mþ 2, C is projected down into R3 and can be visualized. For surface visualizations, a simple

formula is presented calculating the normal vector field of the projection of C into R3, which gives light shadings.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The purpose of this paper is to construct and visualize the isosurface of a discrete function in arbitrary

dimension and codimension. A discrete function / : Zn ! Rm is meant to be a vector valued function

defined on a uniform grid in Rn, which is identified as Zn by translation and scaling. Geometric objects such

as curves and surfaces have been successfully represented as the isosurface of a discrete function. This

implicit representation enables us to easily handle a moving geometric object, because updating a discrete
function may have the same effect as moving the geometric object. This is the idea of the level set method

presented by Osher and Sethian in 1989 [5]. They approximated an interface in Rn moving with curvature

dependent speed by simply updating a discrete function / : Zn ! R. In a recent application of the level set

method to geometric optics [10], wave fronts in R3 were lifted into R5 to remove singularities and
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represented as the isosurface of / : Z5 ! R3. Ambrosio and Soner [17] extended the theory of the level set

method to arbitrary dimension. Based on the extended theory, Lorigo and Faugeras et al. [18] used the

isosurface of / : Z3 ! R2 on the segmentation of blood vessels. Of all the successful methods above,

the final step is to construct and visualize the isosurface of a discrete function / : Zn ! Rm, which is the

purpose of this paper.

Before discussing the construction of the isosurface of a discrete function, wemust give the definition of the

isosurface. Since a discrete function is defined only on grid points, an interpolation should be given to define

the isosurface of a discrete function as the isosurface of its interpolant. Historically there have developed two
types of interpolations in parallel; one is piecewise interpolation on cubes and the other is on simplices.

Lorenson and Cline in 1987 [7] presented a cube-based isosurfacing, marching cubes which works in R3.

Bhaniramka et al. [12] extended themarching cubes to arbitrary dimension. On the other hand, Carneiro et al.

[8] suggested a simplex-based isosurfacing algorithm, tetra cubes which works in R3. Weigle and Banks [13]

proposed a simplex-based isosurfacing algorithm that works in arbitrary dimension and codimension.

The two types of isosurfacing algorithms have very different properties. Simplicial interpolation is

naturally defined as the unique linear interpolant on a simplex, but cubic interpolation on a cube is often

ambiguous and so is the definition of an isosurface. This is because a cube has 2n vertices, while a simplex
has ðnþ 1Þ vertices in Rn. For this reason, Montani et al. [15] modified the marching cubes algorithm to

remove the ambiguity of cubic interpolation and Bhaniramka et al. [12] in their paper extended their

modifications to arbitrary dimension. Given a discrete function on a uniform grid, an isosurfacing algo-

rithm based on cubic interpolation iteratively applies to each grid cell. But for a simplicial isosurfacing to be

used, each grid cell should be decomposed into simplices. It is not known yet what is the minimum number

of simplices for the decomposition of a cube [14]. Most optimal decomposition algorithms split a cube into

Oðn!Þ simplices [1,2]. So the simplicial isosurfacing should iterate Oðn!Þ times more than cubic isosurfacings.

If we compare programming complexities, we see that simplicial isosurfacing is much simpler than cubic
isosurfacings. In R3, 2 types of isosurfaces exist on a 3-simplex, but 14 types on a 3-cube [7]. In R4, 2 types

of isosurfaces exist on a 4-simplex, but 222 types on a 4-cube [12]. In Rn, ½ðnþ 1Þ=2� types of isosurfaces
exist on a n-simplex, but it is hard even to classify the types of isosurfaces on an n-cube [12].

Weigle and Banks [13] proposed a simplicial isosurfacing algorithm that works in arbitrary dimension

and codimension. We followed their framework to define the isosurface of a discrete function as the iso-

surface of its simplicial interpolant. As they pointed out in their paper [13], the isosurface C of a discrete

function / : Zn ! Rm is then a piecewise intersection of a simplex and m hyperplanes. We introduce a new

construction algorithm of C that numerically costs Oð1Þ in time and space for each simplex. Our algorithm
is explicit, while that of Weigle and Banks is recursive.

In Section 2, the simplicial interpolation algorithm is briefly reviewed. With the simplicial definition, the

isosurface of / : Zn ! Rm is a piecewise intersection of a simplex and m hyperplanes in Rn. In Section 3, we

give the triangulation tables of the intersection of a simplex and a hyperplane. A counting theorem is stated

to prove the optimality of the triangulation tables. From the triangulation tables, an intersection of a

simplex and any number of hyperplanes can be constructed as the union of simplices. In Section 4, our main

isosurfacing algorithm is presented. To visualize it, the isosurface in high dimension is often projected down

to R3. In Section 5, we discuss a visualization of the projected isosurface. In Section 5, a dyadic grid is
introduced to reduce the numerical costs. In Section 6, several numerical examples are given. In Section 7,

we summarize our algorithms and discuss future work.
2. Simplicial interpolation

We introduce some definitions in computational geometry to review the simplicial interpolation algo-

rithm [3,9]. An affine set is a translation of a vector space. A hyperplane is an ðn	 1Þ-dimensional affine set
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in Rn. A set of points is called affinely independent, if it is a translation of a linearly independent set. An m-
simplex is the convex hull of ðmþ 1Þ affinely independent points, which are called vertices of the m-simplex.

An l-simplex is called a face of a m-simplex S, if its vertices are vertices of S. A triangulation T of D � Rn is a

finite collection of m-simplices such that
S

r2T r ¼ D and r1 \ r2 is empty or a common face of r1 and r2, if

r1; r2 2 T . An affine map is the composition of a linear map and a translation. An n-cube is the direct

product of n intervals. A polytope is the convex hull of a set of finite points. Two sets are affinely isomorphic,

if there exists a bijective affine map between them.

The simplicial interpolation is an operator ^ from discrete function space CðZn : RmÞ to the continuous
function space CðRn : RmÞ. By a discrete function / 2 CðZn : RmÞ, we mean a vector valued function defined

on a uniform grid, which is identified with Zn by scaling and translation. To define the simplicial inter-

polation ^, an n-cube decomposition algorithm should be given. We choose the canonical Kuhn trian-

gulation algorithm to decompose an n-cube into simplices.

2.1. Kuhn triangulation

Let us define Sn as the set of all permutations of f1; . . . ; ng, i.e., bijective maps from f1; . . . ; ng onto

f1; . . . ; ng. Let us define the standard n-cube �CC ¼ ½0; 1�n. Given a permutation J 2 Sn, we define a set �CCJ as

�CCJ ¼ fx 2 �CCj1P xJð1Þ P � � � P xJðnÞ P 0g:

Then �CCJ is an n-simplex with the following vertices:

�vv0 ¼ ð0; . . . ; 0Þ;
�vv1 ¼ �vv0 þ eJð1Þ;

..

.

�vvn ¼ �vvn	1 þ eJðnÞ:

ek is the kth canonical base of Rn. �CC ¼
S

J2Sn
�CCJ , because for any x 2 �CC, there is a permutation J such that

xJð1Þ P � � � P xJðnÞ. Since jSnj ¼ n!, �CC is the union of n! simplices.

A general n-cube C ¼ ½a1; b1� � � � � � ½an; bn� is affinely isomorphic to �CC under an affine map f : �CC ! C
such that

f ðxÞ ¼ x1 	 a1
b1 	 a1

; . . . ;
xn 	 an
bn 	 an

� �
:

The decomposition �CC ¼
S

J2Sn
�CCJ is preserved to be a decomposition of C under the affine map f ;

C ¼ f 	1ð �CCÞ ¼
S

J2Sn f
	1ð �CCJ Þ. Let us denote the set f 	1ð �CCJ Þ as CJ . Then CJ is an n-simplex with the fol-

lowing vertices:

v0 ¼ ða1; . . . ; anÞ;
v1 ¼ v0 þ bJð1Þ

�
	 aJð1Þ

�
� eJð1Þ;

..

.

vn ¼ vn	1 þ ðbJðnÞ 	 aJðnÞÞ � eJðnÞ:

Given a uniform grid on Rn, we identify the grid as Zn by translation and scaling. We define a grid cell
Ca ¼ fx 2 Rn j ai 6 xi 6 ai þ 1g for each a 2 Zn, which is an n-cube. Each grid cell Ca is decomposed into n!
simplices Ca

J . Then we have the following decomposition of Rn into n-simplices;
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Rn ¼
[
a2Zn

Ca ¼
[
a2Zn

[
J2Sn

Ca
J :

Furthermore, a set of n-simplices fCa
J ja 2 Zn; J 2 Sng is a triangulation of Rn and called the Kuhn trian-

gulation [3].

2.2. Interpolation procedure

Given a discrete function / : Zn ! Rm, its simplicial interpolant /̂/ : Rn ! Rm is piecewise defined on

each simplex Ca
J in the Kuhn triangulation. In a simplex Ca

J ¼ conv½v0; . . . ; vn�, /̂/jCa
J
is defined as the linear

interpolant of / at fv0; . . . ; vng. With the barycentric coordinates k ¼ ðk0; . . . ; knÞ s.t. ki P 0; 8i andPn
i¼0 ki ¼ 1, /̂/ is defined as

/̂/
Xn
i¼0

kivi

 !
¼
Xn
i¼0

ki/ðviÞ:

With the standard coordinates, there is a practical procedure to evaluate /̂/, as described by Kuhn [9]. We

assume that the uniform grid is Zn. The following procedure can be applied to a general uniform grid by

translation and scaling. Given x 2 Rn, a 2 Zn is defined as ai ¼ ½xi� 8i, and y 2 ½0; 1Þn as y ¼ x	 a. Let J be a

permutation of f1; . . . ; ng such that yJð1Þ P � � � P yJðnÞ, then

/̂/ðxÞ ¼ ð1	 yJð1ÞÞ � /ðaÞ
þ ðyJð1Þ 	 yJð2ÞÞ � /ðaþ eJð1ÞÞ

..

.

þ ðyJðn	1Þ 	 yJðnÞÞ � /ðaþ eJð1Þ þ � � � þ eJðn	1ÞÞ
þ ðyJðnÞÞ � /ðaþ eJð1Þ þ � � � þ eJðn	1Þ þ eJðnÞÞ:

If / is scalar valued, r/̂/ on the simplex Ca
J is easily calculated as

r/̂/Jð1Þ ¼
/ðv1Þ 	 /ðv0Þ
bJð1Þ 	 aJð1Þ

;

r/̂/Jð2Þ ¼
/ðv2Þ 	 /ðv1Þ
bJð2Þ 	 aJð2Þ

;

..

.

r/̂/JðnÞ ¼
/ðvnÞ 	 /ðvn	1Þ
bJðnÞ 	 aJðnÞ

: ð1Þ

Now, we show that the simplicial interpolation operator ^ is an operator from discrete function space
CðZn : RmÞ into continuous function space CðRn : RmÞ.

Theorem 2.1. /̂/ : Rn ! Rm is a continuous function.

Proof. /̂/ is continuous on the interior of Ca
J , because it is a polynomial. On Ca

J \ Ca0
J 0 , /̂/ has two possible

definitions /̂/jCa
J
and /̂/jCa0

J 0
. Since fCa

Jg is a triangulation, Ca
J \ Ca0

J 0 is a common face of Ca
J and Ca0

J 0 . Every face

of a simplex is also a simplex of lower dimension. Since there is only one linear interpolant on a simplex, the
two definitions must be the same. �
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Now, we define the isosurface C of a discrete function / : Zn ! Rm as the isosurface of its simplicial

interpolant /̂/ : Rn ! Rm. We assume that C is the zero isosurface of /̂/ without losing generality. By this

simplicial definition,

C ¼ fx 2 Rnj/̂/ðxÞ ¼ 0g

¼
[
a2Zn

[
J2Sn

x 2 Ca
J j/̂/ðxÞ

n
¼ 0
o

¼
[
a2Zn

[
J2Sn

Ca
J \ /̂/1jCa

J

nh
¼ 0
o
\ � � � \ /̂/mjCa

J

n
¼ 0
oi

:

Since each component /̂/i of /̂/ is a first-order polynomial on each Ca
J , the set f/̂/ijCa

J
¼ 0g is geometrically

a hyperplane, and C is a piecewise intersection of a simplex and m hyperplanes. C will be piecewise con-

structed as the union of ðn	 mÞ-simplices in Section 4. Before constructing the C, the next section intro-

duces a triangulation algorithm of the intersection of a simplex and a hyperplane.
3. Intersection of a simplex and a hyperplane

Let an n-simplex S ¼ conv½v1; . . . ; vnþ1� and a hyperplane H ¼ fx 2 RnjwðxÞ ¼ 0g be given with a first-
order polynomial w : Rn ! R. Let us first assume that H does not include the vertices of S, i.e.,

wðviÞ 6¼ 0; 8i. This assumption will be removed later in this section. Then S \ H is a polytope with vertices

vij, where

vij +
wðviÞ

wðviÞ 	 wðvjÞ
� vj 	

wðvjÞ
wðviÞ 	 wðvjÞ

� vi if wðviÞ < 0; wðvjÞ > 0: ð2Þ

vij is the interpolation point between vi and vj such that wðvijÞ ¼ 0. The intersection S \ H is said to be type

ðp; qÞ, if wðviÞ < 0 for p vertices and wðvjÞ > 0 for q vertices. It is worth noting that all sections of the same

type are isomorphic to each other [4]. Hence a triangulation of one specific intersection of type ðp; qÞ can be

applied to the triangulation of any intersection of type ðp; qÞ. An intersection of type ðp; qÞ is naturally

isomorphic to an intersection of type ðq; pÞ, because fw ¼ 0g ¼ f	w ¼ 0g. Since H is assumed not to pass

through any vertex of S, p þ q ¼ nþ 1 and there exist ½ðnþ 1Þ=2� types of intersection between S and H .
In this section, triangulation tables of the intersection are presented up to dimension five. Triangulation

tables of two and three dimensions are easily generated by Figs. 1 and 2. v1; . . . ; vnþ1 are vertices of S and

w1; . . . ;wn are vertices of a simplex in the triangulation of S \ H (see Tables 1 and 2).

Triangulation tables of four and five dimensions are generated by applying the Delaunay triangulation

[6] to a specific section of each type (see Tables 3 and 4). Higher dimensional tables can be also generated in

such a way.
Fig. 1. Intersection of a 2-simplex and a hyperplane.



Fig. 2. Intersections of a 3-simplex and a hyperplane.

Table 1

Triangulation of the intersection between a 2-simplex and a hyperplane

v1 v2 v3 w1 w2

	 	 + v13 v23

Table 2

Triangulation of the intersection between a 3-simplex and a hyperplane

v1 v2 v3 v4 w1 w2 w3

	 	 	 + v14 v24 v34

	 	 + + v13 v23 v14
v14 v23 v24

Table 3

Triangulation of the intersection between a 4-simplex and a hyperplane

v1 v2 v3 v4 v5 w1 w2 w3 w4

	 	 	 	 + v15 v25 v35 v45

	 	 	 + + v14 v15 v34 v24
v15 v24 v25 v34
v15 v25 v35 v34

Table 4

Triangulation of the intersection between a 5-simplex and a hyperplane

v1 v2 v3 v4 v5 v6 w1 w2 w3 w4 w5

	 	 	 	 	 + v16 v26 v36 v56 v46

	 	 	 	 + + v15 v16 v25 v45 v35
v16 v25 v26 v35 v45
v16 v26 v35 v45 v36
v16 v26 v36 v45 v46

	 	 	 + + + v14 v15 v16 v36 v25
v14 v15 v25 v36 v35
v14 v16 v25 v26 v36
v14 v24 v25 v34 v26
v14 v25 v26 v36 v34
v14 v25 v34 v36 v35
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We show that the preceding tables are optimal in a sense that the number of simplices in each trian-

gulation can not be reduced. First we quote a theorem in Haiman�s paper [1], then our statement follows as

a corollary.

Theorem 3.1. Let Dk be a k-simplex and Dl a l-simplex. Every triangulation of Dk � Dl uses exactly
ðk þ lÞ!=k!l! simplices.

Proof. Since every k-simplex is affinely isomorphic to any other, let us pick the standard k-simplex with

vertices e1; e2; . . . ; ekþ1 2 Rkþ1: Every simplex of a triangulation of Dk � Dl has the volume 1=ðk!l!Þ. Since the
volume of Dk � Dl is 1=ðk þ lÞ!, every triangulation of Dk � Dl uses exactly ðk þ lÞ!=k!l! simplices. See [1] for

details. �

Corollary 3.2. Every triangulation of ðp; qÞ-type section uses exactly ðp þ q	 2Þ!=ððp 	 1Þ!ðq	 1Þ!Þ simplices.

Proof. Since all sections of the same type are isomorphic to each other, we can choose a specific section of

ðp; qÞ-type. Let a simplex S ¼ conv½v1; . . . ; vpþq� and a hyperplane H ¼ fwðxÞ ¼ 0g be given such that

wðv1Þ ¼ � � � ¼ wðvpÞ ¼ 	1;

wðvpþ1Þ ¼ � � � ¼ wðvpþqÞ ¼ 1:

With the barycentric coordinates xðk1; . . . ; kpþqÞ ¼
Ppþq

k¼1 kkvk,

wðxðkÞÞ ¼ w
Xpþq

k¼1

kkvk

 !
¼
Xpþq

k¼1

kkwðvkÞ ¼
Xpþq

j¼pþ1

kj 	
Xp
i¼1

ki:

H , S, and H \ S are algebraically expressed with the barycentric coordinates:

xðkÞ 2 H ()
Xp
i¼1

ki ¼
Xpþq

j¼pþ1

kj;

xðkÞ 2 S ()
Xpþq

k¼1

kk ¼ 1; kk P 0;

xðkÞ 2 S \ H ()
Xp
i¼1

ki ¼
Xpþq

i¼pþ1

kj ¼
1

2
; ki; kj P 0:

Since coordinates ki and kj are decoupled in the expression of S \ H :

S \ H ’ ðk1; . . . ; kpÞ
Xp
i¼1

ki

�����
(

¼ 1

2
; ki P 0

)
� ðkpþ1; . . . ; kpþqÞ

Xpþq

j¼pþ1

kj

�����
(

¼ 1

2
; kj P 0

)
:

Hence S \ H is isomorphic to Dp	1 � Dq	1. By the theorem above, every triangulation of S \ H should

use ðp þ q	 2Þ!=ððp 	 1Þ!ðq	 1Þ!Þ simplices. �

By the triangulation tables, we can construct the intersection of an n-simplex and a hyperplane as the
union of ðn	 1Þ-simplices. Here is the construction procedure. Given an n-simplex S ¼ conv½v1; . . . ; vnþ1�
and a hyperplane H ¼ fw ¼ 0g, signums of wðv1Þ; . . . ;wðvnþ1Þ are counted. If there are more positive sig-

nums than negative, w is inverted; w ¼ 	w. Let p be the number of negative signums and q be the number

of positive, then S \ H is an intersection of type ðp; qÞ. The vertices of S are reordered such that

wðv1Þ; . . . ;wðvpÞ < 0 and wðvpþ1Þ; . . . ;wðvnþ1Þ > 0. Interpolation points vij (2) are calculated for i ¼ 1; . . . ; p
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and j ¼ p þ 1; . . . ; nþ 1. Referencing the triangulation table of ðp; qÞ-type, S \ H is constructed as the

union of some simplices of one lower dimension:

S \ H ¼ S1 [ � � � [ Sl: ð3Þ

Numerically only vertices of simplices are stored. We note that this triangulation procedure is
numerically finite in space and time, because the number of simplices is bounded by the tables. Also the

procedure is numerically stable, since the only numerical calculation is to interpolate inner points vij (2)
between vi and vj. Practically if H passes through a vertex vi of S, we perturb w by wðviÞ ¼ �, where
0 < � � 1.
4. Isosurfacing

We define the isosurface C of a discrete function / : Zn ! Rm as the isosurface of its simplicial inter-

polant /̂/ : Rn ! Rm. We may assume that C is the zero isosurface of /̂/ without losing generality. By this

simplicial definition,

C ¼ fx 2 Rnj/̂/ðxÞ ¼ 0g;
¼
[
a2Zn

[
J2Sn

fx 2 Ca
J j/̂/ðxÞ ¼ 0g;

¼
[
a2Zn

[
J2Sn

Ca
J \ f/̂/1jCa

J

h
¼ 0g \ � � � \ f/̂/mjCa

J
¼ 0g

i
:

Since each component /̂/i : R
n ! R of /̂/ is a first-order polynomial on each simplex Ca

J , the set
f/̂/i jCa

J
¼ 0g is geometrically a hyperplane, and C is the intersection of a simplex and m hyperplanes. In

Section 3, an algorithm was presented to construct the intersection of a simplex and a hyperplane as the

union of simplices of one lower dimension. Weigle and Banks pointed out that the intersection of a simplex

and several hyperplanes can be constructed as the union of simplices by successively applying the algorithm

[13]. On a simplex Ca
J , let us say H 1 ¼ f/̂/1jCa

J
¼ 0g; . . . ;Hm ¼ f/̂/mjCa

J
¼ 0g. Then Ca

J \ H 1 \ � � � \ Hm is

constructed by the following procedure:

Ca
J \ H 1 ¼

[n1
j¼1

S1;j;

Ca
J \ H 1 \ H 2 ¼

[n1
j¼1

½S1;j \ H 2� ¼
[n2
j¼1

S2;j;

..

.

Ca
J \ H 1 \ � � � \ Hm ¼

[nm	1

j¼1

½Sm	1;j \ Hm� ¼
[nm
j¼1

Sm;j:

We get a set of ðn	 mÞ-simplices, Ta;J ¼ fSm;jjj ¼ 1; . . . ; nmg such that Ca
J \ C ¼ Ca

J \ H 1 \ � � � \ Hm ¼S
r2Ta;J r. We note that it is numerically finite in time and space to construct the set Ta;J . For example, the

intersection of a 5-simplex and 3 hyperplanes is constructed as the union of up to 6� 3� 2 number of 2-

simplices, where 6, 3, 2 are maximum number of simplices in the triangulation tables of 5, 4, 3 dimensions.

That means n1 6 6, n2 6 6� 3, and n3 6 6� 3� 2.
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Iterating all the simplices Ca
J in the Kuhn triangulation, C is constructed as the union of ðn	 mÞ-sim-

plices:

C ¼
[
a2Zn

[
J2Sn

½C \ Ca
J �

¼
[
a2Zn

[
J2Sn

[
r2Ta;J

r:
ð4Þ
5. Visualization

In Section 4, an algorithm was introduced to construct the isosurface C of a discrete function
/ : Zn ! Rm for any dimension n and any codimension m. C is an ðn	 mÞ-dimensional manifold in its

smooth region. To visualize it, C is often projected down into R3 under a projection map P : Rn ! R3. Since

a projection is an affine map, it maps a simplex to a simplex. From the isosurfacing algorithm (4), P ðCÞ is
the union of projected ðn	 mÞ-simplices;

P ðCÞ ¼
[
a2Zn

[
J2Sn

[
r2Ta;J

P ðrÞ: ð5Þ

When n ¼ mþ 1 or mþ 2, P ðCÞ is the union of line segments or triangles, which can be visualized by

usual graphic libraries such as OpenGL. But, for a surface visualization in R3, the normal vector field

is needed for shadowings. Now we present a simple formula calculating the normal vector field of

P ðCÞ.
In a general framework, let P : Rn ! Rn	mþ2 be a projection such that P ðx1; . . . ; xnÞ ¼ ðx1; . . . ; xn	mþ2Þ. In

Rn, r/̂/1; . . . ;r/̂/m form the normal vector space of C in smooth region. Let us define a vector field
~nn : Rn ! Rn as

~nn ¼
r/̂/1 r/̂/1 � en	mþ2 � � � r/̂/1 � en
..
. ..

. ..
.

r/̂/m r/̂/m � en	mþ2 � � � r/̂/m � en

�������
�������: ð6Þ

r/̂/j is calculated by the divided difference formula (1) and the determinant is expanded with cofactors:

~nn ¼ r/̂/1 �
r/̂/2 � en	mþ2 � � � r/̂/2 � en

..

. ..
.

r/̂/m � en	mþ2 � � � r/̂/m � en

�������
�������þ � � � þ ð	1Þmr/̂/m �

r/̂/1 � en	mþ2 � � � r/̂/1 � en
..
. ..

.

r/̂/m	1 � en	mþ2 � � � r/̂/m	1 � en

�������
�������:

Since ~nn is a linear combination of r/̂/1; . . . ;r/̂/m, it is a normal vector field of C. By the property of

determinant, ~nn � ej ¼ 0 if j ¼ n	 mþ 2; . . . ; n. Given a tangential vector T of C at x 2 C, 0 ¼~nnðxÞ � T ¼
~nnðxÞ � P ðT Þ. Since the projection p is surjective, it is also surjective in tangential vector space. Therefore~nn is
orthogonal to any tangent vector of pðCÞ and it is the normal vector field of P ðCÞ in Rn	mþ1. For example,

when / : Z5 ! R3 and P : R5 ! R3, the normal vector ~nn is given by

~nn ¼ r/̂/1ððr/̂/2 � e4Þðr/̂/3 � e5Þ 	 ðr/̂/3 � e4Þðr/̂/2 � e5ÞÞ
	 r/̂/2ððr/̂/1 � e4Þðr/̂/3 � e5Þ 	 ðr/̂/3 � e4Þðr/̂/1 � e5ÞÞ
þ r/̂/3ððr/̂/1 � e4Þðr/̂/2 � e5Þ 	 ðr/̂/2 � e4Þðr/̂/1 � e5ÞÞ:
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6. Dyadic grid

Let C be the isosurface of / : Zn ! Rm. When C is bounded, the domain of / can be reduced, without

changing C, to f	N ; . . . ;Ngn for some large N bounding C. The isosurfacing in Section 4 numerically costs

Oð1Þ in space and time for each simplex. So, the construction of C numerically costs OðNnÞ in time and

space. This is practically too much when nP 4. We can significantly decrease the costs by removing the

domain of /, where /k k is large. Let L be the Lipschitz constant of / defined as

L ¼ max
a;b2f	N ;...;Ngn

/ðbÞ 	 /ðaÞk k1
b	 ak k1

:

Given an n-cube C ¼ fai 6 xi 6 big with a; b 2 f	N ; . . . ;Ngn, C \ Zn can be omitted from the domain of

/ without changing C, if /ðvÞk k1 > L � b	 ak k1 for some vertex v of C. Based on such an observation,

Tsai et al. [19] introduced a multi-scale grid and Strain [11] introduced a dyadic grid to reduce the domain

of a scalar valued function. We extend Strain�s idea to a vector valued function / : Zn ! Rm.

Let D � Zn be the domain of /. First, we set D ¼ f	N ;Ngn, a set of vertices of ½	N ;N �n. If

/ðvÞk k1 > L � 2N for some v 2 D, then C \ ½	N ;N �n ¼ Ø and we have nothing to do more. When

/ðDÞk k1 6 L � 2N , the n-cube ½	N ;N �n is decomposed into 2n number of n-cubes;

½	N ;N �n ¼
[

a2f0;Ngn
aþ ½	N ; 0�n:

Then, aþ f	N ; 0gn is added to the domain D if /ðaþ f	N ; 0gnÞk k1 6 L � N . This process of ½	N ;N �n is
recursively applied to every n-cube whose vertices are included in D. Therefore the domain D is numerically

implemented as a 2n branched tree with maximum depth logðNÞ. Since C is ðn	 mÞ dimensional, the size of

dyadic grid is OðNn	mÞ. To maintain dyadic tree structure, optional spaces are required in the dyadic grid. It

causes the increase in size from OðNn	mÞ to OðNn	m � logðNÞÞ. Hence the isosurfacing algorithm numerically

costs OðNn	m � logðNÞÞ with a dyadic grid and OðNnÞ with a uniform grid in space and time.

For example, Fig. 3 illustrates dyadic grids, when / : f	N ; . . . ;Ng2 ! R is taken as /ði; jÞ ¼
maxðjaij; jajjÞ with ai ¼ 	1þ 2 � i=N .
7. Numerical examples

Every example was implemented in C++ and run on a PC with 2.2GHz CPU and 512MB memory. All

isosurfaces were constructed by the isosurfacing algorithm in Section 4. 1-simplices or 2-simplices in the
Fig. 3. Dyadic grids when N ¼ 8; 16; 32.
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construction were visualized by the OpenGL graphic library. For 2-simplices, the normal vector field in

Section 5 was used for shadowing.

7.1. Uniform grid vs. dyadic grid

We compare the numerical costs of isosurfacing between a uniform grid and a dyadic grid. On a domain

½	1; 1�3, We take xi ¼ ði	 NÞ=N , yj ¼ ðj	 NÞ=N , hk ¼ ðk 	 NÞ=N , and / : f0; . . . ;Ng3 ! R2 as

/ði; j; kÞ ¼ xi 	 cosðp � hkÞ
yj 	 sinðp � hkÞ

� �
:

We can see that the numerical costs are OðN 3Þ in the uniform grid and OðN � logðNÞÞ � OðNÞ in the

dyadic grid, as expected (see Figs. 4–6 and Tables 5 and 6).

7.2. A singularity resolves in R2

Let a curve C � R2 be given by r ¼ 1þ sinð7hÞ in the polar coordinates. C is a 7-leafed curve and

singular at the origin, where 14 curves meet. In this case, we can resolve the singularity by adding a phase
Fig. 4. C � R3 and its projection on R2.

Fig. 5. Dyadic grids (side view) N ¼ 32; 64; 128.



Fig. 6. Dyadic grids (front view) N ¼ 32; 64; 128.

Table 5

Numerical costs in uniform grid

N Time (ms) Rate Space for C (byte) Space for / (byte) Total space Rate

32 78 11,376 524,288 535,664

64 609 2.96 24,060 4,194,304 4,218,364 2.98

128 4265 2.81 48,012 33,554,432 33,602,444 2.99

256 34,360 3.01 71,630 268,435,456 268,507,086 3.00

Table 6

Numerical costs in dyadic grid

N Time (ms) Rate Space for C (byte) Space for / (byte) Total space Rate

32 5.4 11,952 69,384 81,336

64 10.8 1.00 25,488 145,992 171,480 1.08

128 21.4 0.99 51,120 293,832 344,952 1.01

256 41.8 0.97 97,776 574,728 672,504 0.96

306 C. Min / Journal of Computational Physics 190 (2003) 295–310
variable h, as described by Osher et al. [10] and Engquist et al. [16]. With a new coordinate system ðx; y; hÞ,
we define C0 � R3 as the solution of the following equations:

x ¼ ð1þ sinð7hÞÞ � cosðhÞ;
y ¼ ð1þ sinð7hÞÞ � sinðhÞ:

�

Then C ¼ pðC0Þ, where pðx; y; hÞ ¼ ðx; yÞ: In Figs. 7 and 8, C and C0 are approximated as the isosurfaces

of discrete functions w : f1; . . . ; 128g2 ! R and / : f1; . . . ; 128g3 ! R2, respectively, where ai ¼ 	1þ 2 � i=
128, hk ¼ 2p � k=128 and

wði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ a2j

q
	 1	 sin 7 � tan	1 aj

ai

� �� �
;

/ði; j; kÞ ¼ ai 	 ð1þ sinð7hkÞÞ � cosðhkÞ
aj 	 ð1þ sinð7hkÞÞ � sinðhkÞ

� �
:

7.3. A singularity resolves in R3

Let a surface C � R3 be given by rðh;uÞ ¼ 1þ cosð2uÞ in the spherical coordinates ðr; h;uÞ. C is a

surface of revolution obtained by rotating 2-leaf curve around the z-axis and it is singular at the origin. In



Fig. 8. Approximations of the non-singular curve C0 � R3 and pðC0Þ � R2.

Fig. 7. Approximation of the singular curve C � R2.
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this case, we can resolve the singularity by adding phase variables h and u, as described by Osher et al. [10].

This resolution is a direct generalization of the technique used in Section 7.2. With a new coordinate system

ðx; y; z; h;uÞ, we define C0 � R5 as the solution of equations:

x ¼ ð1þ cosð2uÞÞ � cosðhÞ � sinðuÞ;
y ¼ ð1þ cosð2uÞÞ � sinðhÞ � sinðuÞ;
z ¼ ð1þ cosð2uÞÞ � cosðuÞ:

8<
:

Then C ¼ pðC0Þ, where pðx; y; z; h;uÞ ¼ ðx; y; zÞ: In Fig. 9, C and C0 are approximated as the isosurfaces

of discrete functions w : f1; . . . ; 32g3 ! R and / : f1; . . . ; 32g5 ! R2, respectively, where ai ¼ 	2þ 4
32
i,

hm ¼ 2p � m
32
, un ¼ p � n

32
and

wði; j; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ a2j þ a2k

q
	 1	 cos 2 tan	1 aj

ai

� �� �
;

/ði; j; k;m; nÞ ¼
ai 	 ð1þ cosð2unÞÞ � cosðhmÞ � sinðunÞ
aj 	 ð1þ cosð2unÞÞ � sinðhmÞ � sinðunÞ

ak 	 ð1þ cosð2unÞÞ � cosðunÞ

0
@

1
A:



Fig. 9. Approximations of C � R3 and pðC0Þ � R3.
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The dyadic grid in Section 6 is used for the domain of / with Lipð/Þ ¼ 3:5. The numerical cost of C0 is

almost OðN 2Þ ’ OðN 2 logðNÞÞ, as expected (see Table 7).

7.4. Algebraic curves in C2

Let an algebraic curve C � C2 is defined by fðz1; z2Þ 2 C2 j f ðz1; z2Þ ¼ 0g, where f : C2 ! C is a poly-

nomial. In their paper [13], Weigle and Banks pointed out that C can be represented by the isosurface of
�ff : R4 ! R2, where

�ff ðx; y; p; qÞ ¼ Re ½f ðxþ iy; p þ iqÞ�
Im ½f ðxþ iy; p þ iqÞ�

� �
:

In this example, f is chosen as f ðz1; z2Þ ¼ z21 þ z22 	 1 and C � R4 is approximated as the isosurface of a

sampled discrete function from �ff in 324 uniform grid. The approximation of C � R4 is then projected down
into ðx; y; pÞ and ðx; y; qÞ coordinates (see Fig. 10).

7.5. Intersection of two spheres in R4

We test our algorithms in an example, where the true solution is known. Let two spheres S1and S2 in R4

be given as

x2 þ y2 þ z2 þ w	 1
2

� �2 ¼ 1;

x2 þ y2 þ z2 þ wþ 1
2

� �2 ¼ 1:

(

Table 7

Numerical costs for C0

N Space for / (byte) Rate Space for C (byte) Rate

8 2,977,680 2,221,344

16 11,820,432 1.99 9,398,736 2.08

32 48,300,432 2.03 37,655,568 2.00

64 202,640,016 2.07 148,883,472 1.98



Fig. 10. Projections of an algebraic curve in C2.

Fig. 11. Projection of the intersection of two spheres in R4 when N ¼ 40.
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S1 \ S2 is algebraically given as x2 þ y2 þ z2 ¼ 3=4. Numerically S1 \ S2 is approximated as the isosurface

of / : f0; . . . ;Ng4 ! R2 such that

/ði; j; k; lÞ ¼ a2i þ a2j þ a2k þ ðal 	 1
2
Þ2 	 1;

a2i þ a2j þ a2k þ ðal þ 1
2
Þ2 	 1;

(

where ai ¼ 	1:3þ 2:6 � i=ðN 	 1Þ. The intersection is then projected down into R3 (see Fig. 11).
8. Conclusion

We have presented an isosurfacing algorithm that works in an arbitrary number of dimensions and

codimensions. For a discrete function / : f0; . . . ;Ngn ! Rm, the isosurface C of / is defined as the iso-

surface of its simplicial interpolant /̂/ : ½0; . . . ;N �n ! Rm. Geometrically C is a piecewise intersection of a
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simplex and m hyperplanes. Triangulation tables are given of the intersection of a simplex and a hyper-

plane. A counting theorem was stated to prove the optimality of the tables. Referencing the tables, C is

constructed as the union of simplices. The construction costs OðNnÞ with a uniform grid and

OðNn	m logðNÞÞ with a dyadic grid in the numerical space and time. When n ¼ mþ 1 or mþ 2, C � Rn is

projected down into R3 and can be visualized. A simple formula is introduced calculating the normal vector

field of the projected surface, when n ¼ mþ 2.
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